A splitting lemma for coherent sheaves

نویسندگان

چکیده

The presented splitting lemma extends the techniques of Gromov and Forstneri\v{c} to glue local sections a given analytic sheaf, key step in proof all Oka principles. novelty on which depends is lifting for transition maps coherent sheaves, yields reduction work Forstneri\v{c}. As applications we get shortcuts proofs Forster Ramspott's principle admissible pairs interpolation property elliptic submersions, an extension Gromov's results obtained by Prezelj.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A splitting lemma

In this paper, we study the relations between the numerical structure of the optimal solutions of a convex programming problem defined on the edge set of a simple graph and the stability number (i.e. the maximum size of a subset of pairwise non-adjacent vertices) of the graph. Our analysis shows that the stability number of every graph G can be decomposed in the sum of the stability number of a...

متن کامل

Coherent Sheaves and Cohesive Sheaves

We consider coherent and cohesive sheaves of O–modules over open sets Ω ⊂ Cn. We prove that coherent sheaves, and certain other sheaves derived from them, are cohesive; and conversely, certain sheaves derived from cohesive sheaves are coherent. An important tool in all this, also proved here, is that the sheaf of Banach space valued holomorphic germs is flat. To Linda Rothschild on her birthday

متن کامل

A splitting lemma for equivariant dynamics

Giuseppe Gaeta Centre de Physique Theorique, Ecole Polytechnique F-91128 Palaiseau (France) and Departamento de Fisica Teorica II, Universidad Complutense E-28040 Madrid (Spain) Summary. It is shown that a number of interesting and useful results in equivariant dynamics can be seen as a consequence of a general "splitting principle". Both the results and the principle are actually embodied by t...

متن کامل

Coherent Sheaves and Categorical

We introduce the concept of a geometric categorical sl2 action and relate it to that of a strong categorical sl2 action. The latter is a special kind of 2-representation in the sense of Rouquier. The main result is that a geometric categorical sl2 action induces a strong categorical sl2 action. This allows one to apply the theory of strong sl2 actions to various geometric situations. Our main e...

متن کامل

Descent for Quasi-coherent Sheaves on Stacks

We give a homotopy theoretic characterization of sheaves on a stack and, more generally, a presheaf of groupoids on an arbitary small site C. We use this to prove homotopy invariance and generalized descent statements for categories of sheaves and quasi-coherent sheaves. As a corollary we obtain an alternate proof of a generalized change of rings theorem of Hovey.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analysis & PDE

سال: 2021

ISSN: ['2157-5045', '1948-206X']

DOI: https://doi.org/10.2140/apde.2021.14.1761